Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 259(Pt 1): 129002, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176501

RESUMO

Tumor cell-targeting molecules play a vital role in cancer diagnosis, targeted therapy, and biomarker discovery. Aptamers are emerging as novel targeting molecules with unique advantages in cancer research. In this work, we have developed several DNA aptamers through cell-based systematic evolution of ligands by exponential enrichment (Cell-SELEX). The selected SYL-6 aptamer can bind to a variety of cancer cells with high signal. Tumor tissue imaging demonstrated that SYL-6-Cy5 fluorescent probe was able to recognize multiple clinical tumor tissues but not the normal tissues, which indicates great potential of SYL-6 for clinical tumor diagnosis. Meanwhile, we identified prohibitin 2 (PHB2) as the molecular target of SYL-6 using mass spectrometry, pull-down and RNA interference assays. Moreover, SYL-6 can be used as a delivery vehicle to carry with doxorubicin (Dox) chemotherapeutic agents for antitumor targeted chemotherapy. The constructed SYL-6-Dox can not only selectively kill tumor cells in vitro, but also inhibit tumor growth with reduced side effects in vivo. This work may provide a general tumor cell-targeting molecule and a potential biomarker for cancer diagnosis and targeted therapy.


Assuntos
Aptâmeros de Nucleotídeos , Neoplasias , Humanos , Aptâmeros de Nucleotídeos/metabolismo , Proibitinas , Doxorrubicina/farmacologia , Neoplasias/tratamento farmacológico , Biomarcadores , Técnica de Seleção de Aptâmeros/métodos , Linhagem Celular Tumoral
2.
Bioorg Med Chem ; 96: 117483, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37951136

RESUMO

Natural products (NPs) represent a treasure trove for drug discovery and development due to their chemical structural diversity and a broad spectrum of biological activities. Uncovering the biological targets and understanding their molecular mechanism of actions are crucial steps in the development of clinical therapeutics. However, the structural complexity of NPs and intricate nature of biological system present formidable challenges in target identification of NPs. Although significant advances have been made in the development of new chemical tools, these methods often require high levels of synthetic skills for preparing chemical probes. This can be costly and time-consuming relaying on operationally complicated procedures and instruments. In recent efforts, we and others have successfully developed an operationally simple and practical chemical tool known as native-compound-coupled CNBr-activated Sepharose 4B beads (NCCB) for NP target identification. In this approach, a native compound readily reacts with commercial CNBr-activated Sepharose 4B beads with a process that is easily performed in any biology laboratory. Based on NCCB, our group has identified the direct targets of more than 60 NPs. In this review, we will elucidate the application scopes, including flavonoids, quinones, terpenoids and others, characteristics, chemical mechanisms, procedures, advantages, disadvantages, and future directions of NCCB in specific target discovery.


Assuntos
Produtos Biológicos , Sefarose , Produtos Biológicos/farmacologia , Descoberta de Drogas
4.
Eur J Med Chem ; 261: 115844, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37804769

RESUMO

Erianin, a bioactive compound extracted from Dendrobium, a traditional Chinese medicine, exhibits remarkable anti-cancer properties through diverse molecular mechanisms and has attracted the attention of medicinal chemists. However, the low solubility in water, rapid metabolism and elimination from the body lead to poor bioavailability of Erianin, and greatly hinder its clinical application. The development of new Erianin derivatives is continuously proceed to improve its anticancer effects. In recent years, although important progress in the development of Erianin and the publication of some reviews in this aspect, the mechanism against various cancers, pharmacokinetic study, structural modification as well as structure-activity relationships have not been thoroughly considered. This review is aimed at providing complete picture regarding the above aspects by reviewing studies from 2000 to 2023.06. This review also supplies some important viewpoints on the design and future directions for the development of Erianin derivatives as possible clinically effective anticancer agents.


Assuntos
Antineoplásicos , Bibenzilas , Linhagem Celular Tumoral , Bibenzilas/farmacologia , Fenol , Antineoplásicos/farmacologia
5.
Bioorg Chem ; 140: 106828, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37690368

RESUMO

In drug discovery and development, the direct target identification of bioactive small molecules plays a significant role for understanding the mechanism of action, predicting the side effects, and rationally designing more potent compounds. However, due to the complicated regulatory processes in a cell together with thousands of biomacromolecules, target identification is always the major obstacle. New methods and technologies are continuously invented to tackle this problem. Nevertheless, the mainly used tools possess several disadvantages. High synthetic skills are typically required to laboriously synthesize a probe for protein enrichment. To detect the ligand-protein interaction by analyzing proteins' responses to proteolytic or thermal treatment, costly and precise instruments are always necessary. Therefore, convenient and practical techniques are urgently needed. Over the past decades, a strategy using native compounds without the requirement of chemical modification, also termed Native-compound-Coupled Affinity Matrix (NCAM), is developing continuously. Two practical tactics based on "label-free" compounds have been invented and used, that is Photo-cross-linked Small-molecule Affinity Matrix (PSAM) and Native-compound-Coupled CNBr-activated Beads (NCCB). Presently, we will elucidate the characteristics, coupling mechanism, advantages and disadvantages, and future prospect of NCAM in specific target identification and validation.


Assuntos
Descoberta de Drogas , Peptídeo Hidrolases , Proteólise , Moléculas de Adesão de Célula Nervosa
6.
Org Lett ; 23(19): 7656-7660, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34543030

RESUMO

Herein we report a cascade cocatalysis strategy for the facile construction of chiral γ,γ-disubstituted butenolides. The synthetic manifold employs simple alkynoic acids instead of the preformed silyloxy furans or 5-substituted furan-2(3H)-ones. In situ formed 5-substituted furan-2(3H)-ones by AgNO3 or Ph3PAuCl/AgOTf catalyzed cyclization of alkynoic acids can smoothly engage in the subsequent chiral diphenylprolinol TMS-ether catalyzed Michael and Michael-aldol reactions. The cascade process serves as a general approach to chiral quaternary γ,γ-disubstituted butenolides.


Assuntos
4-Butirolactona/análogos & derivados , Aldeídos/química , Aminas/química , Pirrolidinas/síntese química , 4-Butirolactona/síntese química , 4-Butirolactona/química , Catálise , Ciclização , Estrutura Molecular , Pirrolidinas/química , Estereoisomerismo
7.
Molecules ; 26(12)2021 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-34204782

RESUMO

A simple arylamine-catalyzed Mannich-cyclization cascade reaction was developed for facile synthesis of substituted 2H-benzo[h]chromenes. The notable feature of the process included the efficient generation of ortho-quinone methides (o-QMs) catalyzed by a simple aniline. The mild reaction conditions allowed for a broad spectrum of 1- and 2-naphthols and trans-cinnamaldehydes to engage in the cascade sequence with high efficiency.

8.
Commun Chem ; 4(1): 20, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-36697532

RESUMO

Accessing fascinating organic and biological significant indolines via dearomatization of indoles represents one of the most efficient approaches. However, it has been difficult for the dearomatization of the electron deficient indoles. Here we report the studies leading to developing a photoredox mediated Giese-type transformation strategy for the dearomatization of the indoles. The reaction has been implemented for chemoselectively breaking indolyl C=C bonds embedded in the aromatic system. The synthetic power of this strategy has been demonstrated by using structurally diverse indoles bearing common electron-withdrawing groups including (thio)ester, amide, ketone, nitrile and even aromatics at either C2 or C3 positions and ubiquitous carboxylic acids as radical coupling partner with high trans-stereoselectivity (>20:1 dr). This manifold can also be applied to other aromatic heterocycles including pyrroles, benzofurans and benzothiophenes. Furthermore, enantioselective dearomatization of indoles has been achieved by a chiral camphorsultam auxiliary with high diastereoselectivity.

9.
Org Lett ; 22(24): 9562-9567, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33300807

RESUMO

A mild organophotoredox synthetic protocol for forming a Csp3-S/Se bond by reacting widespread redox-active esters with thio/selenosulfonates has been developed. The power of the synthetic manifold is fueled by an unprecedented broad substrate scope and wide functional group tolerance.

10.
Org Lett ; 22(4): 1557-1562, 2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-32045253

RESUMO

A mild, versatile organophotoredox protocol has been developed for the preparation of diverse, enantioenriched α-deuterated α-amino acids. Distinct from the well-established two-electron transformations, this radical-based strategy offers the unrivaled capacity of the convergent unification of readily accessible feedstock carboxylic acids and a chiral methyleneoxazolidinone fragment and the simultaneous highly diastereo-, chemo-, and regioselective incorporation of deuterium. Furthermore, the approach has addressed the long-standing challenge of the installation of sterically demanding side chains into α-amino acids.


Assuntos
Aminoácidos/síntese química , Ácidos Carboxílicos/química , Oxazolidinonas/química , Aminoácidos/química , Catálise , Radicais Livres/química , Estrutura Molecular , Oxirredução , Processos Fotoquímicos , Estereoisomerismo
11.
ACS Catal ; 10(3): 2226-2230, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33623725

RESUMO

H/D exchange at formyl groups represents the straightforward approach to C-1 deuterated aldehydes. This transformation has been recently realized by transition metal and NHC carbene catalysis. Mechanistically, all these processes involve an ionic pathway. Herein we report a distinct photoredox catalytic, visible light mediated neutral radical approach. Selective control of highly reactive acyl radical in the energy barrier surmountable, reversible reaction enables driving the formation of deuterated products when an excess of D2O is employed. The power of the H/D exchange process has been demonstrated for not only aromatic aldehydes, but also aliphatic substrates, which have been difficult in transitional metal catalyzed H/D exchange reactions, and for selective late-stage deuterium incorporation into complex structures with uniformly high deuteration level (>90%).

12.
Chem Sci ; 11(48): 13079-13084, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34094490

RESUMO

While strategies involving a 2e- transfer pathway have dictated glycosylation development, the direct glycosylation of readily accessible glycosyl donors as radical precursors is particularly appealing because of high radical anomeric selectivity and atom- and step-economy. However, the development of the radical process has been challenging owing to notorious competing reduction, elimination and/or SN side reactions of commonly used, labile glycosyl donors. Here we introduce an organophotocatalytic strategy through which glycosyl bromides can be efficiently converted into corresponding anomeric radicals by photoredox mediated HAT catalysis without a transition metal or a directing group and achieve highly anomeric selectivity. The power of this platform has been demonstrated by the mild reaction conditions enabling the synthesis of challenging α-1,2-cis-thioglycosides, the tolerance of various functional groups and the broad substrate scope for both common pentoses and hexoses. Furthermore, this general approach is compatible with both sp2 and sp3 sulfur electrophiles and late-stage glycodiversification for a total of 50 substrates probed.

13.
Org Biomol Chem ; 17(38): 8737-8744, 2019 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-31553003

RESUMO

We report a bifunctional Ag catalyst promoted intramolecular capture of oxonium ylides with alkynes for the enantioselective synthesis of 2,5-dihydrofurans. This represents unprecedented synergistic catalysis of a bifunctional Ag catalyst. Mechanistic studies revealed that [(R)-3,5-DM-BINAP](AgSbF6)2 (9) is likely to be the active catalytic species and that the reaction involves second order kinetics with respect to 9, suggesting that two molecules of 9 are involved in the intramolecular trapping of a Ag-associated oxonium ylide with a Ag-activated alkyne. Based on our mechanistic hypothesis, we further optimized the reaction, rendering a facile approach to 2,5-dihydrofurans in good to excellent yields in a highly chemo- and enantioselective fashion.

14.
Chemistry ; 25(35): 8225-8228, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-30986322

RESUMO

A metal- and oxidant-free catalytic method for accessing structurally diverse thioesters from readily accessible, widespread aldehydes, is described. A strategy of a simple organic 9,10-phenanthrenequinone-promoted hydrogen atom transfer (HAT) with visible light was successfully implemented to selectively generate acyl radicals without inducing crossover reactivity of thioester products. The preparative power of the method was demonstrated by broad substrate scope and wide functional group tolerance, and enabled the late-stage modification of complex structures, which are difficult to achieve with the existing protocols.

15.
Org Lett ; 21(9): 3086-3092, 2019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-30978030

RESUMO

An approach for efficient synthesis of C-glycosyl amino acids is described. Different from typical photoredox-catalyzed reactions of imines, the new process follows a pathway in which α-imino esters serve as electrophiles in chemoselective addition reactions with nucleophilic glycosyl radicals. The process is highlighted by the mild nature of the reaction conditions, the highly stereoselectivity attending C-C bond formation, and its applicability to C-glycosylations using both armed and disarmed pentose and hexose derivatives.

16.
Nat Catal ; 2(12): 1071-1077, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-33791590

RESUMO

The recent surge in applications of deuterated pharmaceutical agents has created an urgent demand for synthetic methods that efficiently generate deuterated building blocks. Here we show that N-heterocyclic carbenes (NHC) promote a reversible hydrogen-deuterium exchange (HDE) reaction with simple aldehydes, which leads to a practical approach to synthetically valuable C-1 deuterated aldehydes. The reactivity of the well-established NHC catalysed formation of Breslow intermediates from aldehydes is reengineered to overcome the overwhelmingly kinetically favorable, irreversible benzoin condensation reaction and achieve the critical reversibility to drive the formation of desired deuterated products when an excess of D2O is employed. Notably, this operationally simple and cost-effective protocol serves as a general and truly practical approach to all types of 1-D-aldehydes including aryl, -alkyl and -alkenyl aldehydes and enables chemoselective late-stage deuterium incorporation into complex, native therapeutic agents and natural products with uniformly high levels (>95%) of deuterium incorporation for a total of 104 substrates tested.

17.
J Am Chem Soc ; 139(29): 9799-9802, 2017 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-28692260

RESUMO

An unprecedented, chemo- and regioselective, organo-photoredox catalyzed hydroformylation reaction of aryl olefins with diethoxyacetic acid as the formylation reagent is described. In contrast to traditional transition metal promoted ionic hydroformylation reactions, the new process follows a unique photoredox promoted, free radical pathway. In this process, a formyl radical equivalent, produced from diethoxacetic acid through a dye (4CzIPN) photocatalyzed, sequential oxidation-decarboxylation route, regio- and chemoselectively adds to a styrene substrate. Importantly, under the optimized reaction conditions the benzylic radical formed in this manner is reduced by SET from the anion radical of 4CzIPN to generate a benzylic anion. Finally, protonation produces the hydroformylation product. By using the new protocol, aldehydes can be generated regioselectively in up to 90% yield. A broad array of functional groups is tolerated in the process, which takes place under mild, metal-free conditions.

18.
Angew Chem Int Ed Engl ; 56(28): 8201-8205, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28544143

RESUMO

Reported herein is a conceptually novel organocatalytic strategy for the formylation of boronic acids. New reactivity is engineered into the α-amino-acid-forming Petasis reaction occurring between aryl boronic acids, amines, and glyoxylic acids to prepare aldehydes. The operational simplicity of the process and its ability to generate structurally diverse and valued aryl, heteroaryl, and α,ß-unsaturated aldehydes containing a wide array of functional groups, demonstrates the practical utility of the new synthetic strategy.

19.
Angew Chem Int Ed Engl ; 56(6): 1500-1505, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28066982

RESUMO

A simple formylation reaction of aryl halides, aryl triflates, and vinyl bromides under synergistic nickel- and organic-dye-mediated photoredox catalysis is reported. Distinct from widely used palladium-catalyzed formylation processes, this reaction proceeds by a two-step mechanistic sequence involving initial in situ generation of the diethoxymethyl radical from diethoxyacetic acid by a 4CzIPN-mediated photoredox reaction. The formyl-radical equivalent then undergoes nickel-catalyzed substitution reactions with aryl halides and triflates and vinyl bromides to form the corresponding aldehyde products. Significantly, besides aryl bromides, less reactive aryl chlorides and triflates and vinyl halides serve as effective substrates for this process. Since the mild conditions involved in this reaction tolerate a plethora of functional groups, the process can be applied to the efficient preparation of diverse aromatic aldehydes.

20.
Org Lett ; 18(21): 5744-5747, 2016 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-27779411

RESUMO

A metal-free catalytic approach to tryptanthrins has been achieved for the first time. The unique process is realized by an organocatalytic and indole and anthranilic acid substrate co-catalyzed photochemical oxidative condensation with visible light and O2. The truly environmentally friendly reaction conditions enable various reactants to participate in the process to deliver structurally diverse tryptanthrins.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...